分类:教师公开招聘/江西    来源:fenbi
如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按,
的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为
s,
的面积为
,则下列图象中能大致表示
与
的函数关系的是( )。
已知函数和函数
(
),关于这两个函数图象的交点个数,下列四个结论:
①当时,两个函数图象没有交点;
②当时,两个函数图象恰有三个交点;
③当时,两个图象恰有两个交点;
④当时,两个图象恰有四个交点。
正确结论的个数有( )。
如图,把含角的直角三角板的直角顶点C放在直线a上,其中
,直角边AC和斜边AB分别与直线b相交,如果
,且
,则
的度数为________。
已知等比数列的前n项和为
,且
,则
。
已知双曲线(
)的离心率为2,则焦点到渐近线的距离是______。
如图,在平行四边形ABCD中,过点A,B,C三点的圆交AD于E,且与CD相切,若AB=4,BE=5,则DE的长为______。
如图,在中,C为直角顶点,
,O为斜边中点,将OA绕着点O逆时针旋转至
(
),当
恰为轴对称图形时,
的值为______。
计算:。
解方程:。
已知抛物线C:(
)的焦点为F,若过点F且斜率为1的直线与抛物线相交于两点M,N,MN=4。求抛物线C的方程;
先化简,再求值:,其中
是不等式组
的整数解。
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能向左或向右落下。
(1)试问小球通过第二层A位置的概率是多少?
(2)请用学过的数学方法模拟实验,并具体说明小球下落到第三层B位置和第四层C位置处的概率各是多少?
中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据条件分别在图1,图2中,画出一个圆内接等腰
(保留作图痕迹,不写作法)。
筒车是我国古代水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”。如图,半径为3cm的筒车圆O按逆时针方向每分钟转圈,筒车与水面分别交于点A、B,筒车的轴心O距离水面的高度OC长为2.2m,筒车上均匀分布着若干个盛水桶,若以某个盛水桶刚浮出水面时开始计算时间。
(1)盛水桶P首次到达最高点需要时间多少秒?
(2)浮出水面3.4秒后,盛水桶距离水面多高?
(3)若接水槽MN所在直线是圆O的切线,且与直线AB交于点M,MO=8m,求盛水桶P从最高点开始,至少经过多长时间恰好在直线mn上。
(参考数据:,
,
)
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,是正三角形,且E为AD的中点,F为PE的中点,BE⊥平面PAD。
(1)证明:平面PBC⊥平面PEB;
(2)求点P到平面BCF的距离。
,OA=12,点C在OA上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F。
(
、
、
为常数,
)